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Abstract

Transformer recently has presented encouraging
progress in computer vision. In this work, we present
new baselines by improving the original Pyramid Vision
Transformer (PVTv1) by adding three designs, includ-
ing (1) overlapping patch embedding, (2) convolutional
feed-forward networks, and (3) linear complexity attention
layers.

With these modifications, our PVTv2 significantly im-
proves PVTv1 on three tasks e.g., classification, detection,
and segmentation. Moreover, PVTv2 achieves compara-
ble or better performances than recent works such as Swin
Transformer. We hope this work will facilitate state-of-the-
art Transformer researches in computer vision. Code is
available at https://github.com/whai362/PVT.

1. Introduction
Recent studies on vision Transformer are converging on

the backbone network [8, 30, 32, 33, 23, 35, 10, 5] de-
signed for downstream vision tasks, such as image classi-
fication, object detection, instance and semantic segmen-
tation. To date, there have been some promising results.
For example, Vision Transformer (ViT) [8] first proves
that a pure Transformer can archive state-of-the-art per-
formance in image classification. Pyramid Vision Trans-
former (PVT) [32] shows that a pure Transformer back-
bone can also surpass CNN counterparts in several detec-
tion and segmentation tasks [22, 40, ?]. After that, Swin
Transformer [23], CoaT [35], LeViT [10], and Twins [5]
further improve the classification, detection, and segmenta-
tion performance with Transformer backbones.

This work aims to establish stronger and more feasible
baselines built on the PVTv1 framework. We report that
three design improvements, namely (1) overlapping patch
embedding, (2) convolutional feed-forward networks, and
(3) linear complexity attention layers are orthogonal to the
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Figure 1: Two improvements in PVTv2. (1) Overlapping
Patch Embedding. (2) Convolutional Feed Forward Net-
work.

PVTv1 framework, and when used with PVT, they can bring
better image classification, object detection, instance and
semantic segmentation performance. Specifically, PVTv2-
B51 yields 83.8% top-1 error on ImageNet, which is signifi-
cantly better than Swin-B [23] and Twins-SVT-L [5], while
PVTv2-B5 has fewer parameters and GFLOPs. More-
over, GFL [19] with PVT-B2 archives 50.2 AP on COCO
val2017, 2.6 AP higher than the one with Swin-T [23],
5.7 AP higher than the one with ResNet50 [13]. We hope
these improved baselines will provide a reference for future
research in vision Transformer.

1PVTv2 has 6 different size variants, from B0 to B5 according to the
parameter number.

https://github.com/whai362/PVT


2. Related Work
We mainly discuss transformer backbones related to this

work. ViT [8] treats each image as a sequence of tokens
(patches) with a fixed length, and then feeds them to mul-
tiple Transformer layers to perform classification. It is the
first work to prove that a pure Transformer can also archive
state-of-the-art performance in image classification when
training data is sufficient (e.g., ImageNet-22k [7], JFT-
300M). DeiT [30] further explores a data-efficient training
strategy and a distillation approach for ViT.

To improve image classification performance, recent
methods make tailored changes to ViT. T2T ViT [36] con-
catenates tokens within an overlapping sliding window into
one token progressively. TNT [11] utilizes inner and outer
Transformer blocks to generate pixel and patch embed-
dings respectively. CPVT [6] replaces the fixed size po-
sition embedding in ViT with conditional position encod-
ings, making it easier to process images of arbitrary reso-
lution. CrossViT [2] processes image patches of different
sizes via a dual-branch Transformer. LocalViT [20] incor-
porates depth-wise convolution into vision Transformers to
improve the local continuity of features.

To adapt to dense prediction tasks such as object de-
tection, instance and semantic segmentation, there are also
some methods [32, 23, 33, 35, 10, 5] to introduce the pyra-
mid structure in CNNs to the design of Transformer back-
bones. PVTv1 is the first pyramid structure Transformer,
which presents a hierarchical Transformer with four stages,
showing that a pure Transformer backbone can be as ver-
satile as CNN counterparts and performs better in detec-
tion and segmentation tasks. After that, some improve-
ments [23, 33, 35, 10, 5] are made to enhance the local con-
tinuity of features and to remove fixed size position embed-
ding. For example, Swin Transformer [23] replaces fixed
size position embedding with relative position biases, and
restricts self-attention within shifted windows. CvT [33],
CoaT [35], and LeViT [10] introduce convolution-like op-
erations into vision Transformers. Twins [5] combines lo-
cal attention and global attention mechanisms to obtain
stronger feature representation.

3. Methodology
3.1. Limitations in PVTv1

There are three main limitations in PVTv1 [32] as fol-
lows: (1) Similar to ViT [8], PVTv1 [32] treats an image
as a sequence of non-overlapping patches, which loses the
local continuity of the image to a certain extent; (2) The po-
sition encoding in PVTv1 is fixed-size, which is inflexible
for process images of arbitrary size; (3) When processing
high-resolution input (e.g., shorter side being 800 pixels),
the computational complexity of PVTv1 is relatively large.
These problems limit the performance of PVTv1 on vision

tasks.
To address these issues, we propose PVTv2, which im-

proves PVTv1 through designs including overlapping patch
embedding, convolutional feed-forward networks, and lin-
ear spatial reduction attention layer.

3.2. Overlapping Patch Embedding

We utilize overlapping patch embedding to tokenize im-
ages. As shown in Fig. 1(a), we enlarge the patch window,
making adjacent windows overlap by half of the area, and
pad the feature map with zeros to keep the resolution. In
this work, we use convolution with zero paddings to imple-
ment overlapping patch embedding. Specifically, given an
input of size h × w × c, we feed it to a convolution with
the stride of S, the kernel size of 2S − 1, the padding size
of S − 1, and the kernel number of c′. The output size is
h
S × w

S × C ′.

3.3. Convolutional Feed-Forward

Inspired by [17, 6, 20], we remove the fixed-size position
encoding [8], and introduce zero padding position encoding
into PVT. As shown in Fig. 1(b), we add a 3×3 depth-wise
convolution [16] with the padding size of 1 between the first
fully-connected (FC) layer and GELU [15] in feed-forward
networks.

3.4. Linear Spatial Reduction Attention

To further reduce the computation cost of PVT, we pro-
pose linear spatial reduction attention (SRA) as illustrated
in Fig. 2. Different from SRA [32], linear SRA enjoys lin-
ear computational and memory costs like a convolutional
layer. Specifically, given an input of size h × w × c, the
complexity of SRA and linear SRA are:

Ω(SRA) =
2h2w2c

R2
+ hwc2R2, (1)

Ω(Linear SRA) = 2hwP 2c, (2)

where R is the spatial reduction ratio of SRA [32]. P is the
pooling size of linear SRA, which is set to 7 by default.

Combining the three improvements, PVTv2 can (1) ob-
tain more local continuity of images and feature maps; (2)
process variable-resolution input more flexibly; (3) enjoy
the same linear complexity as CNN.

4. Details of PVTv2 Series
We scale up PVTv2 from B0 to B5 By changing the

hyper-parameters. which are listed as follows:

• Si: the stride of the overlapping patch embedding in
Stage i;

• Ci: the channel number of the output of Stage i;
• Li: the number of encoder layers in Stage i;



Output Size Layer Name PVT-Tiny PVT-Small PVT-Medium PVT-Large

Stage 1 H
4 ×

W
4

Patch Embedding P1 = 4; C1 = 64

Transformer
Encoder

 R1 = 8
N1 = 1
E1 = 8

× 2

 R1 = 8
N1 = 1
E1 = 8

× 3

 R1 = 8
N1 = 1
E1 = 8

× 3

 R1 = 8
N1 = 1
E1 = 8

× 3

Stage 2 H
8 ×

W
8

Patch Embedding P2 = 2; C2 = 128

Transformer
Encoder

 R2 = 4
N2 = 2
E2 = 8

× 2

 R2 = 4
N2 = 2
E2 = 8

× 3

 R2 = 4
N2 = 2
E2 = 8

× 3

 R2 = 4
N2 = 2
E2 = 8

× 8

Stage 3 H
16 ×

W
16

Patch Embedding P3 = 2; C3 = 320

Transformer
Encoder

 R3 = 2
N3 = 5
E3 = 4

× 2

 R3 = 2
N3 = 5
E3 = 4

× 6

 R3 = 2
N3 = 5
E3 = 4

× 18

 R3 = 2
N3 = 5
E3 = 4

× 27

Stage 4 H
32 ×

W
32

Patch Embedding P4 = 2; C4=512

Transformer
Encoder

 R4 = 1
N4 = 8
E4 = 4

× 2

 R4 = 1
N4 = 8
E4 = 4

× 3

 R4 = 1
N4 = 8
E4 = 4

× 3

 R4 = 1
N4 = 8
E4 = 4

× 3

Table 1: Detailed settings of PVTv2 series. “-Li” denotes PVTv2 with linear SRA.
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Figure 2: Comparison of SRA in PVTv1 and linear SRA
in PVTv2.

• Ri: the reduction ratio of the SRA in Stage i;
• Pi: the adaptive average pooling size of the linear SRA

in Stage i;
• Ni: the head number of the Efficient Self-Attention in

Stage i;
• Ei: the expansion ratio of the feed-forward layer [31]

in Stage i;

Tab. 1 shows the detailed information of PVTv2 se-
ries. Our design follows the principles of ResNet [14]. (1)
the channel dimension increase while the spatial resolution
shrink with the layer goes deeper. (2) Stage 3 is assigned to
most of the computation cost.

5. Experiment

5.1. Image Classification

Settings. Image classification experiments are performed
on the ImageNet-1K dataset [26], which comprises 1.28
million training images and 50K validation images from
1,000 categories. All models are trained on the training set
for fair comparison and report the top-1 error on the valida-
tion set. We follow DeiT [30] and apply random cropping,

Method #Param (M) GFLOPs Top-1 (%)
R18* [14] 11.7 1.8 30.2
R18 [14] 11.7 1.8 31.5
DeiT-Tiny/16 [30] 5.7 1.3 27.8
PVT-Tiny (ours) 13.2 1.9 24.9
R50* [14] 25.6 4.1 23.9
R50 [14] 25.6 4.1 21.5
X50-32x4d* [34] 25.0 4.3 22.4
X50-32x4d [34] 25.0 4.3 20.5
DeiT-Small/16 [30] 22.1 4.6 20.1
PVT-Small (ours) 24.5 3.8 20.2
R101* [14] 44.7 7.9 22.6
R101 [14] 44.7 7.9 20.2
X101-32x4d* [34] 44.2 8.0 21.2
X101-32x4d [34] 44.2 8.0 19.4
ViT-Small/16 [8] 48.8 9.9 19.2
PVT-Medium (ours) 44.2 6.7 18.8
X101-64x4d* [34] 83.5 15.6 20.4
X101-64x4d [34] 83.5 15.6 18.5
ViT-Base/16 [8] 86.6 17.6 18.2
DeiT-Base/16 [30] 86.6 17.6 18.2
PVT-Large (ours) 61.4 9.8 18.3

Table 2: Image classification performance on the Ima-
geNet validation set. “#Param” refers to the number of
parameters. “GFLOPs” is calculated under the input scale
of 224 × 224. “*” indicates the performance of the method
trained under the strategy of its original paper. “-Li” de-
notes PVTv2 with linear SRA.

random horizontal flipping [28], label-smoothing regular-
ization [29], mixup [37], and random erasing [39] as data
augmentations. During training, we employ AdamW [25]
with a momentum of 0.9, a mini-batch size of 128, and a
weight decay of 5 × 10−2 to optimize models. The initial
learning rate is set to 1 × 10−3 and decreases following the
cosine schedule [24]. All models are trained for 300 epochs
from scratch on 8 V100 GPUs. We apply a center crop on
the validation set to benchmark, where a 224× 224 patch is
cropped to evaluate the classification accuracy.
Results. In Tab. 2, we see that PVTv2 is the state-of-the-
art method on ImageNet-1K classification. Compared to



Backbone RetinaNet 1× Mask R-CNN 1×
#P (M) AP AP50 AP75 APS APM APL #P (M) APb APb

50 APb
75 APm APm

50 APm
75

PVTv2-B0 13.0 37.2 57.2 39.5 23.1 40.4 49.7 23.5 38.2 60.5 40.7 36.2 57.8 38.6
ResNet18 [14] 21.3 31.8 49.6 33.6 16.3 34.3 43.2 31.2 34.0 54.0 36.7 31.2 51.0 32.7
PVTv1-Tiny [32] 23.0 36.7 56.9 38.9 22.6 38.8 50.0 32.9 36.7 59.2 39.3 35.1 56.7 37.3
PVTv2-B1 (ours) 23.8 41.2 61.9 43.9 25.4 44.5 54.3 33.7 41.8 64.3 45.9 38.8 61.2 41.6
ResNet50 [14] 37.7 36.3 55.3 38.6 19.3 40.0 48.8 44.2 38.0 58.6 41.4 34.4 55.1 36.7
PVTv1-Small [32] 34.2 40.4 61.3 43.0 25.0 42.9 55.7 44.1 40.4 62.9 43.8 37.8 60.1 40.3
PVTv2-B2-Li (ours) 32.3 43.6 64.7 46.8 28.3 47.6 57.4 42.2 44.1 66.3 48.4 40.5 63.2 43.6
PVTv2-B2 (ours) 35.1 44.6 65.6 47.6 27.4 48.8 58.6 45.0 45.3 67.1 49.6 41.2 64.2 44.4
ResNet101 [14] 56.7 38.5 57.8 41.2 21.4 42.6 51.1 63.2 40.4 61.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d [34] 56.4 39.9 59.6 42.7 22.3 44.2 52.5 62.8 41.9 62.5 45.9 37.5 59.4 40.2
PVTv1-Medium [32] 53.9 41.9 63.1 44.3 25.0 44.9 57.6 63.9 42.0 64.4 45.6 39.0 61.6 42.1
PVTv2-B3 (ours) 55.0 45.9 66.8 49.3 28.6 49.8 61.4 64.9 47.0 68.1 51.7 42.5 65.7 45.7
PVTv1-Large [32] 71.1 42.6 63.7 45.4 25.8 46.0 58.4 81.0 42.9 65.0 46.6 39.5 61.9 42.5
PVTv2-B4 (ours) 72.3 46.1 66.9 49.2 28.4 50.0 62.2 82.2 47.5 68.7 52.0 42.7 66.1 46.1
ResNeXt101-64x4d [34] 95.5 41.0 60.9 44.0 23.9 45.2 54.0 101.9 42.8 63.8 47.3 38.4 60.6 41.3
PVTv2-B5 (ours) 91.7 46.2 67.1 49.5 28.5 50.0 62.5 101.6 47.4 68.6 51.9 42.5 65.7 46.0

Table 3: Object detection and instance segmentation on COCO val2017. “#P” refers to parameter number. APb and
APm denote bounding box AP and mask AP, respectively. “-Li” denotes PVTv2 with linear SRA.

PVT, PVTv2 has similar flops and parameters, but the im-
age classification accuracy is greatly improved. For ex-
ample, PVTv2-B1 is 3.6% higher than PVTv1-Tiny, and
PVTv2-B4 is 1.9% higher than PVT-Large.

Compared to other recent counterparts, PVTv2 series
also has large advantages in terms of accuracy and model
size. For example, PVTv2-B5 achieves 83.8% ImageNet
top-1 accuracy, which is 0.5% higher than Swin Trans-
former [23] and Twins [5], while our parameters and
FLOPS are fewer.

5.2. Object Detection

Settings. Object detection experiments are conducted on
the challenging COCO benchmark [22]. All models are
trained on COCO train2017 (118k images) and evalu-
ated on val2017 (5k images). We verify the effectiveness
of PVTv2 backbones on top of mainstream detectors, in-
cluding RetinaNet [21], Mask R-CNN [12], Cascade Mask
R-CNN [1], ATSS [38], GFL [19], and Sparse R-CNN [27].
Before training, we use the weights pre-trained on Ima-
geNet to initialize the backbone and Xavier [9] to initialize
the newly added layers. We train all the models with batch
size 16 on 8 V100 GPUs, and adopt AdamW [25] with an
initial learning rate of 1 × 10−4 as optimizer. Following
common practices [21, 12, 3], we adopt 1× or 3× train-
ing schedule (i.e., 12 or 36 epochs) to train all detection
models. The training image is resized to have a shorter side
of 800 pixels, while the longer side does not exceed 1,333
pixels. When using the 3× training schedule, we randomly
resize the shorter side of the input image within the range of
[640, 800]. In the testing phase, the shorter side of the input
image is fixed to 800 pixels.
Results. As reported in Tab. 3, PVTv2 significantly outper-
forms PVTv1 on both one-stage and two-stage object de-

tectors with similar model size. For example, PVTv2-B4
archive 46.1 AP on top of RetinaNet [21], and 47.5 APb

on top of Mask R-CNN [12], surpassing the models with
PVTv1 by 3.5 AP and 4.6 APb, respectively. We present
some qualitative object detection and instance segmenta-
tion results on COCO val2017 [22] in Fig. 3, which also
shows the good performance of our models.

For a fair comparison between PVTv2 and Swin Trans-
former [23], we keep all settings the same, including
ImageNet-1K pre-training and COCO fine-tuning strate-
gies. We evaluate Swin Transformer and PVTv2 on four
state-of-the-arts detectors, including Cascade R-CNN [1],
ATSS [38], GFL [19], and Sparse R-CNN [27]. We see
PVTv2 obtain much better AP than Swin Transformer
among all the detectors, showing its better feature repre-
sentation ability. For example, on ATSS, PVTv2 has simi-
lar parameters and flops compared to Swin-T, but PVTv2
achieves 49.9 AP, which is 2.7 higher than Swin-T. Our
PVTv2-Li can largely reduce the computation from 258 to
194 GFLOPs, while only sacrificing a little performance.

5.3. Semantic Segmentation

Settings. Following PVTv1 [32], we choose ADE20K [40]
to benchmark the performance of semantic segmentation.
For a fair comparison, we test the performance of PVTv2
backbones by applying it to Semantic FPN [18]. In the
training phase, the backbone is initialized with the weights
pre-trained on ImageNet [7], and the newly added layers are
initialized with Xavier [9]. We optimize our models using
AdamW [25] with an initial learning rate of 1e-4. Following
common practices [18, 4], we train our models for 40k itera-
tions with a batch size of 16 on 4 V100 GPUs. The learning
rate is decayed following the polynomial decay schedule
with a power of 0.9. We randomly resize and crop the im-



Backbone Method APb APb
50 APb

75 #P (M) GFLOPs
ResNet50 [14] Cascade

Mask
R-CNN [1]

46.3 64.3 50.5 82 739
Swin-T [23] 50.5 69.3 54.9 86 745
PVTv2-B2-Li (ours) 50.9 69.5 55.2 80 725
PVTv2-B2 (ours) 51.1 69.8 55.3 83 788
ResNet50 [14]

ATSS [38]

43.5 61.9 47.0 32 205
Swin-T [23] 47.2 66.5 51.3 36 215
PVTv2-B2-Li (ours) 48.9 68.1 53.4 30 194
PVTv2-B2 (ours) 49.9 69.1 54.1 33 258
ResNet50 [14]

GFL [19]

44.5 63.0 48.3 32 208
Swin-T [23] 47.6 66.8 51.7 36 215
PVTv2-B2-Li (ours) 49.2 68.2 53.7 30 197
PVTv2-B2 (ours) 50.2 69.4 54.7 33 261
ResNet50 [14]

Sparse
R-CNN [27]

44.5 63.4 48.2 106 166
Swin-T [23] 47.9 67.3 52.3 110 172
PVTv2-B2-Li (ours) 48.9 68.3 53.4 104 151
PVTv2-B2 (ours) 50.1 69.5 54.9 107 215

Table 4: Compare with Swin Transformer on object de-
tection. “APb” denotes bounding box AP. “#P” refers to
parameter number. “GFLOPs” is calculated under the input
scale of 1280×800. “-Li” denotes PVTv2 with linear SRA.

Backbone Semantic FPN
#Param (M) GFLOPs mIoU (%)

PVTv2-B0 (ours) 7.6 25.0 37.2
ResNet18 [14] 15.5 32.2 32.9
PVTv1-Tiny [32] 17.0 33.2 35.7
PVTv2-B1 (ours) 17.8 34.2 42.5
ResNet50 [14] 28.5 45.6 36.7
PVTv1-Small [32] 28.2 44.5 39.8
PVTv2-B2-Li (ours) 26.3 41.0 45.1
PVTv2-B2 (ours) 29.1 45.8 45.2
ResNet101 [14] 47.5 65.1 38.8
ResNeXt101-32x4d [34] 47.1 64.7 39.7
PVTv1-Medium [32] 48.0 61.0 41.6
PVTv2-B3 (ours) 49.0 62.4 47.3
PVTv1-Large [32] 65.1 79.6 42.1
PVTv2-B4 (ours) 66.3 81.3 47.9
ResNeXt101-64x4d [34] 86.4 103.9 40.2
PVTv2-B5 (ours) 85.7 91.1 48.7

Table 5: Semantic segmentation performance of differ-
ent backbones on the ADE20K validation set. “GFLOPs”
is calculated under the input scale of 512 × 512. “-Li” de-
notes PVTv2 with linear SRA.

age to 512 × 512 for training, and rescale to have a shorter
side of 512 pixels during testing.
Results. As shown in Tab. 5, when using Semantic
FPN [18] for semantic segmentation, PVTv2 consistently
outperforms PVTv1 [32] and other counterparts. For ex-
ample, with almost the same number of parameters and
GFLOPs, our PVTv2-B1/B2/B3/B4 are at least 5.3 points
higher than PVTv1-Tiny/Small/Medium/Large. Moreover,
although the GFLOPs of our PVT-Large are 12% lower than
those of ResNeXt101-64x4d, the mIoU is still 8.5 points
higher (48.7 vs 40.2). In Fig. 3, we also visualize some
qualitative semantic segmentation results on ADE20K [40].
These results demonstrate that our PVTv2 backbones can

extract powerful features for semantic segmentation, bene-
fiting from the improved designs.

6. Conclusion
We study the limitations of Pyramid Vision Transformer

(PVT) and improve it with three designs, which are over-
lapping patch embedding, convolutional feed-forward net-
work, and linear spatial reduction attention layer. Exten-
sive experiments on different tasks, such as image classifi-
cation, object detection, and semantic segmentation demon-
strate that the proposed PVTv2 is stronger than its predeces-
sor PVT and other state-of-the-art transformer-based back-
bones, under comparable numbers of parameters. We hope
these improved baselines will provide a reference for future
research in vision Transformer.
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